Saturday, November 3, 2012

History of plastic and figure

History

                      Early plastics were bio-derived materials such as egg and blood proteins, which are organic polymers. Treated cattle horns were used as windows for lanterns in the Middle Ages. Materials that mimicked the properties of horns were developed by treating milk-proteins (casein) with lye. In the 1800s the development of plastics accelerated with Charles Goodyear's discovery of vulcanization as a route to thermoset materials derived from natural rubber. Many storied materials were reported as industrial chemistry was developed in the 1800s. 
                      In the early 1900s, Bakelite, the first fully synthetic thermoset was reported by Belgian chemist Leo Baekeland. After the First World War, improvements in chemical technology led to an explosion in new forms of plastics. Among the earliest examples in the wave of new polymers were polystyrene (PS) and polyvinyl chloride (PVC). The development of plastics has come from the use of natural plastic materials (chewing gum, shellac) to the use of chemically modified natural materials ( rubber, nitrocellulose, collagen, galalite) and finally to completely synthetic molecules ( bakelite, epoxy, polyvinyl chloride).

Parkensine

                    The plastic material, parkensine, was patented by Alexander Parkes, In Birmingham, UK in 1856. It was unveiled at the 1862 Great International Exhibition in London. Parkesine won a bronze medal at the 1862 World's fair in London. Parkensine was made from cellulose (the major component of plant cell walls) treated with nitric acid as a solvent. The output of the process (commonly known as cellulose nitrate or pyroxilin) could be dissolved in alcohol and hardened into a transparent and elastic material that could be molded when heated. By incorporating pigments into the product, it could be made to resemble ivory.


 Picture of Alexander Parkes

Bakelite

                    The first so called plastic based on a synthetic polymer was made from phenol and formaldehyde, with the first viable and cheap synthesis methods invented in 1907, by Leo Hendrik Baekeland, a Belgian-born American living in New York state. Baekeland was looking for an insulating shellac to coat wires in electric motors and generators. He found that combining phenol (C6H5OH) and formaldehyde (HCOH) formed a sticky mass and later found that the material could be mixed with wood flour, asbestos, or slate dust to create strong and fire resistant "composite" materials. The new material tended to foam during synthesis, requiring that Baekeland build pressure vessels to force out the bubbles and provide a smooth, uniform product, as he announced in 1909, in a meeting of the American Chemical Society. Bakelite was originally used for electrical and mechanical parts, coming into widespread use in consumer goods and jewelry in the 1920s. Bakelite was a purely synthetic material, not derived from living matter. It was also an early thermosetting plastic.
Picture of Leo Hendrik Baekeland

 Picture of Baekeland molecule


The result of his experiment

Saturday, September 29, 2012

Type Of Plastics



Thermoplastics and thermosetting polymers


There are two types of plastics: thermoplastics and thermosetting polymers. Thermoplastics are the plastics that do not undergo chemical change in their composition when heated and can be molded again and again. Examples include polyethylene, polypropylene, polystyrene,polyvinyl chloride, and polytetrafluoroethylene (PTFE). Common thermoplastics range from 20,000 to 500,000 atomic mass unit (amu), while thermosets are assumed to have infinite molecular weight. These chains are made up of many repeating molecular units, known as repeat units, derived from monomers; each polymer chain will have several thousand repeating units.

Thermosets can melt and take shape once; after they have solidified, they stay solid. In the thermosetting process, a chemical reaction occurs that is irreversible. The vulcanization of rubber is a thermosetting process. Before heating with sulfur, the polyisoprene is a tacky, slightly runny material, but after vulcanization the product is rigid and non-tacky.
Other classifications
Other classifications are based on qualities that are relevant for manufacturing or product design. Examples of such classes are the thermoplastic and thermoset, elastomer, structural, biodegradable, and electrically conductive. Plastics can also be classified by various physical properties, such as density, tensile strength, glass transition temperature, and resistance to various chemical products.


Biodegradability


Biodegradable plastics break down (degrade) upon exposure to sunlight (e.g., ultra-violet radiation), water or dampness, bacteria, enzymes, wind abrasion, and in some instances, rodent, pest, or insect attack are also included as forms of biodegradation or environmental degradation. Some modes of degradation require that the plastic be exposed at the surface, whereas other modes will only be effective if certain conditions exist in landfill or composting systems. Starch powder has been mixed with plastic as a filler to allow it to degrade more easily, but it still does not lead to complete breakdown of the plastic. Some researchers have actually genetically engineered bacteria that synthesize a completely biodegradable plastic, but this material, such as Biopol, is expensive at present. The German chemical company BASF makes Ecoflex, a fully biodegradable polyester for food packaging applications.


Natural vs synthetic


Most plastics are produced from petrochemicals. Motivated by the finiteness of petrochemical reserves and possibility of global warming, bioplastics are being developed. Bioplastics are made substantially from renewable plant materials such as cellulose and starch.
In comparison to the global consumption of all flexible packaging, estimated at 12.3 million tonnes/year, estimates put global production capacity at 327,000 tonnes/year for related bio-derived materials.

Crystalline vs amorphous

Some plastics are partially crystalline and partially amorphous in molecular structure, giving them both a melting point (the temperature at which the attractive intermolecular forces are overcome) and one or more glass transitions (temperatures above which the extent of localized molecular flexibility is substantially increased). The so-called semi-crystalline plastics include polyethylene, polypropylene, poly (vinyl chloride), polyamides (nylons), polyesters and some polyurethanes. Many plastics are completely amorphous, such as polystyrene and its copolymers, poly (methyl methacrylate), and all thermosets.

Saturday, September 1, 2012

Composition& Additives


Plastic is made of organic polymer, which is a mixture of different chemicals. The chemicals in organic polymer consists of oxygen, sulfur, or nitrogen.


Most plastics contain organic polymers. The structure of these polymers are based on chains of carbon atoms itself or with oxygen, sulfur, or nitrogen as well. The backbone is a part of the chain on the main "path" linking a large number of repeat units together. To customize the properties of a plastic, different molecular groups "hang" from the backbone (usually they are "hung" as part of the monomers before linking monomers together to form the polymer chain). The structure of these "side chains" influence the properties of the polymer. This fine tuning of the properties of the polymer by repeating unit's molecular structure has allowed plastics to become an indispensable part of the world in the twenty-first century.
Structure of Polymer

Most plastics contains of organic or inorganic materials which is blended. The amount of additives ranged from 0% until 20% for polymer are used to wrap foods and 50% for electronic application. The average polymer contains of additives were 20% of polymer weight. It can decrease production costs. Fillers improve the performance and/or reduce production costs. Stabilizing additives are included fire retardants to lower the flammability of the material. Many plastics contain fillers, relatively inert and inexpensive materials that make the product cheaper by weight. Typically fillers are mineral in origin, e.g., chalk. Some fillers are more chemically active and are called reinforcing agents. Since many organic polymers are too rigid for particular applications, they are blended with plasticizers (oily compounds that confer improved rheology). Colorants are common additives, although their weight contribution is small. Many controversies areassociated with plastics that are associated with the additives.